

    
      Navigation

      
        	
          index

        	
          next |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Welcome to MedCrawler’s documentation!

Contents:



	Introduction

	Installation

	Tutorial
	Quickstart

	Command line tool





	Creating your own plugins

	Examples
	Example 1

	Example 2

	Example 3





	Reference
	mc_scraper

	mc_indexer

	mc_grapher













          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Introduction

MedCrawler is a lightweight tool to analyze the public’s perception of medical concepts. It retrieves blog posts about certain topics and extracts medical terms from them in order to find relevant connections.

The tool contains three sub-modules for different parts of the workflow, which can be used in conjunction or alone.

The Scraper looks for blog posts according to user-specified tags. Different plugins allow to include different sources in the search.

The Indexer finds and exctracts the medically relevant words and returns them as MeSH [https://en.wikipedia.org/wiki/Medical_subject_headings] terms.

Finally, the Grapher analyzes the occurrence of the terms in the various blog posts and presents the correlations in a network graph.

MedCrawler was developed by the Bioactivity Screening Group at the University of Helsinki (2016).





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Installation

MedCrawler is available from Github (https://github.com/a-hel/MedCrawler.git).

You also need to download the MeSH descriptors as xml (e.g. <desc2016.xml>) separately and save/unzip it to the MedCrawler folder (not the /src). It is available from the National Library of Medicine at `<https://www.nlm.nih.gov/mesh/download\_mesh.html>`_ .





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Tutorial


Quickstart

In the terminal, navigate to the location of the tool. Then, change to the /src folder.

>>> cd src





To start the program in quickstart mode, just run the shell script:

>>> ./MedCrawler.sh





or

>>> bash MedCrawler.sh





depending on your operating system.

This will start the Scraper and send the results directly to the Indexer.

You will be prompted to enter the scraping parameters.

Project: A unique project name to save your results

Plugins: List the plugins you want to use for the web search. Standard pre-installed plugin is wp (WordPress). If you want to use more than one plugin, separate their names by a whitespace.

Search terms: List the search terms for your project. Separate the search terms by a whitespace. If your search term contains any whitespaces, replace them with a plus sign (+). Example: car+insurance motorbike

Number of entries: List the number of entries you want to retrieve for each search term and each plugin.

Confirm the start of the program with (y)es


Note

Data for each project will be stored in the ../projects/ folder.






Command line tool

Instead of quickstart, you can use command line parameters for crawling and plotting. Behaviour depends on the first parameter, which has to be (c)rawl or (p)lot:

Crawl mode parameters (arbitrary order):


-pr, –project:   Unique project identifier

-p, –plugins:   Plugins to include in search, separated by whitespace        Whitespaces within the search terms need to be replaced by a plus sign (+)



Any other input will be interpreted as search keyword or number of terms (if numeric)

>>> ./MedCrawler.sh c -pr Example3 2000 -p wp pain migraine headache





Plotting mode parameters:


-pr, –project: Unique project identifier

-mw, –minweight: Minimum weights to plot

-hl, –highlight (optional): Term to highlight in the plot. With this option, only connections with the specified term will be displayed. This is case-sensitive.



To exclude unwanted terms, prepend them with a slash (‘/’).

Every argument is interpreted as a category. You can define the depth of filtering by typing the first characters of the tree number. You can find the category codes on the MeSH website [https://www.nlm.nih.gov/cgi/mesh/2016/MB_cgi].

>>> ./MedCrawler.sh p -pr Example1 -mw 10 B01.650 B03 B04 C01 C02 D






Note

If you are not sure, which minweight setting will produce useful results, choose a large one (e.g. 1000). If it is too large to find any connections, you will get a summary of the weight distribution.




Note

You can also directrly call the main.py script with the same parameters. This way, you cannot use the quickstart mode.









          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Creating your own plugins

The MedCrawler is shipped with the WordPress plugin, which accesses blogs hosted with WordPress through their API. While this is probably the largest repository of blogs, you might want to include other sources as well.

You can extend the functionality of the module by writing your own plugins. A plugin is a short python script that will be loaded and executed during the scraping. For security reasons, only include plugins that you fully understand.

A plugin must be saved in the /plugins folder. When invoked, the crawler calls the plugin’s main() function with a list of terms and number of entries as arguments.

>>> plugin.main(['term1', 'term2', 'term3'], size=200)





The main function returns, or even better yields, the retrieved blog posts as an iterable

Save the script in the src/plugins/ folder. Use the filename (without the *.py extension) to access the plugin. Feel free to share your plugin with a pull request to github.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Examples

The projects folder contains 3 example of already scraped data that you can use to get acquainted with the grapher.


Example 1

This Example contains scraped terms from the keywords virus, bacteria, infection, flu, influenza, common cold, and fever. Make a graph including only certain MeSH categories:

>>> ./MedCrawler.sh  p -pr Example1 -mw 10 B01.650 B03 B04 C01 C02 D








Example 2

These terms come from WordPress searches for the keywords insomnia, sleepless and sleeping disorder. Exclude the term ‘Id’ with the following syntax:

>>> ./MedCrawler.sh  p -pr Example2 -mw 5 /Id








Example 3

Here, you can visualize associations with the higlighted term Headache through the following example:

>>> ./MedCrawler.sh p -pr Example3 -hl Headache -mw 10











          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	MedCrawler latest documentation 
 
      

    


    
      
          
            
  
Reference


mc_scraper


	
main(tags, n_posts[, plugins=('wp'), target="new_project"])

	Retrieve blog posts and yield them as pure ASCII.





	Parameters:	
	tags (list of str) – Keywords to look for

	n_posts (int) – Number of posts to retrieve per keyword and plugin

	(list of str) (plugins) – Plugins to include. Plugins must be saved
in the ‘plugins’ folder under <plugin_name>.py

	target (str) – Project name






	Return type:	list of str














mc_indexer


	
build_index(sourcefile)

	Build index based on sourcefile and return first node.





	Parameters:	sourcefile (str) – Path and file name of the MeSH database (e.g.
desc2016.xml)


	Return type:	mc_tree.Node










	
traverse(index, posts)

	Find indexed words from posts and return the preferred term and its tree number





	Parameters:	
	index (mc_tree.Node) – The tree node from where to start the search

	posts (list of str) – List of all the posts in pure ASCII






	Return type:	list of tuples of str














mc_grapher


	
main(project[, categories=[], minweight=1, highlight=False, exclude=[], color_scheme="default", source="terms.txt"])

	Build and show the graph.





	Parameters:	
	project (str) – The project name

	categories (list of str) – The MeSH categories to include. If
the list is empty, all categories will be included.

	minweight (int) – Minimum weight necessary for connections
to be displayed.

	highlight (str) – A specific term to highlight. If
false, no term will be highlighted

	exclude (list of str) – List of terms to exclude from the analysis.

	color_scheme (str) – Color scheme for the plot, not implemented

	source (src) – Name of sourcefile within project
folder






	Return type:	None












	
build_matrix(res_file[, categories=[], highlight=False, exclude=[], color_scheme="default"])

	Build and return the correlation matrix and node labels and their colors






	param res_file:	File name and path to load


	type res_file:	str


	param categories:

		List of categories to include


	type categories:

		list of str


	param highlight:

		MeSH term to highlight


	type highlight:	str


	param exclude:	List of MeSH terms to exclude


	type exclude:	list of str


	param color_scheme:

		Color scheme for the plot, not implemented


	type color_scheme:

		str


	rtype:	scipy.sparse.dok_matrix, list of str, list of str













	
create_plot(corr_map, terms, colors[, minweight=1, dpi=600])

	Draw plot and create metadata.





	Parameters:	
	corr_map (scipy.sparse.dok_matrix) – Correlation matrix as returned from build_matrix()

	terms (list of str) – List of unique terms in the same order as the
corrmap axes

	colors (list of str) – List of colors according to MeSH category in the
same order as the corrmap axes

	minweight (int) – Minimum number of co-occurrences to draw.

	dpi (int) – DPI for plot






	Return type:	Matplotlib.Figure, list of str, list of str

















          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	MedCrawler latest documentation 
 
      

    


    
      
          
            

Index



 B
 | C
 | M
 | T
 


B


  	
      
  	build_index() (built-in function)
  


  

  	
      
  	build_matrix() (built-in function)
  


  





C


  	
      
  	create_plot() (built-in function)
  


  





M


  	
      
  	main() (built-in function), [1]
  


  





T


  	
      
  	traverse() (built-in function)
  


  







          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  _static/minus.png





_static/comment-close.png





_static/comment.png





_static/up.png





_static/down.png





_static/file.png





_static/plus.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





search.html


    
      Navigation


      
        		
          index


        		MedCrawler latest documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

